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Chasnov �Phys. Fluids 10, 1191 �1998�� reviewed the results for passive scalar spectra in high-Schmidt-
number stationary turbulence as derived by Kraichnan �J. Fluid Mech. 64, 737 �1974�� and generalized them
to simple nonstationary flows. In two-dimensional turbulence, the Kraichnan spectra are usually fitted by
numerically solving the spectral equation using the derived asymptotic behavior for small and large wave
numbers. In this Brief Report, we show that the Kraichnan passive scalar spectrum over the entire range of k
is essentially a modified Bessel function of the second kind. We also present analytical forms of the spectra in
three-dimensional nonstationary turbulence, where as shown by Chasnov, the nonstationarity can be respon-
sible for different asymptotic behavior than the usual Kraichnan’s three-dimensional stationary form. Our
results considerably simplify the “fitting” of passive scalar spectra from experimental and numerical data, with
the simple analytical form valid for the whole range of k, instead of just the asymptotes, which are usually
valid only for a small fraction of resolved wave numbers.
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The convection of a passive scalar by a turbulent velocity
field has a wide range of applications in many physical sys-
tems ranging from temperature fluctuations in grid generated
turbulence and oceanic measurements, to mixing of chemi-
cals introduced to the fluid or pollutants in the atmosphere.
For extensive reviews of passive scalar mixing see, for ex-
ample, Shraiman and Siggia �1�, Warhaft �2�, Dimotakis �3�,
or the book by Lesieur �4�. An important class of flows oc-
curs when the diffusivity of the scalar D is small compared
to the viscosity of the fluid �, so the Schmidt number Sc
=� /D�1. A high Schmidt-number condition means that the
scalar wants to develop much smaller length scales com-
pared to the velocity field. For stationary turbulence �when
the spectrum decays self-similarly�, the high Schmidt-
number regime of the flow was considered by Batchelor �5�
who, under the assumption that large-scale velocity fluctua-
tions can be represented as a uniform strain for the small-
scale scalar field, derived that in the viscous-convective
range, the scalar spectrum is proportional to k−1 followed by
a Gaussian falloff exp�−k2�. Kraichnan �6� generalized this
idea with the inclusion of fluctuations in space and time of
the strain field and showed that in the viscous-convective
range the spectrum follows k−1 as k→0, whereas for higher
k it falls off as exp�−k�. Although the theory of passive scalar
mixing is far from completed, Kraichnan’s result seems to
better fit numerical and experimental data and is generally
accepted as correct. Extensive numerical analysis of passive
scalar dynamics has been performed by Chasnov �7�, who
also presented Kraichnan’s analytical results in a “more trac-
table” way and generalized them for simple nonstationary
flows. For the three-dimensional stationary case, Kraichnan
obtained the solution in simple elementary functions, but for
two-dimensional flows, the spectra solutions contain conflu-
ent hypergeometric functions. Usually to fit the data, the
asymptotic behavior for low and high k is considered, and
then the spectral equation is integrated numerically from

high k to k=0 �7�. In this Brief Report, we show that the
solution for the passive scalar spectrum for stationary and
nonstationary turbulence can be expressed as a simple modi-
fied Bessel function.

For simplicity and to facilitate a direct comparison of our
results, we adopt the same nomenclature as Chasnov �7�,
where � is viscosity, D is scalar diffusivity, and �,�� are the
dissipation rates for the energy and scalar, respectively. With-
out sources, the passive scalar spectrum E��k , t� obeys the
evolution equation in k space

�

�t
E��k,t� = T��k,t� − 2Dk2E��k,t� , �1�

where T��k , t� is the scalar transfer spectrum. The scalar dis-
sipation rate is defined as

�� = 2D�
0

�

k2E��k,t�dk . �2�

To eliminate the explicit time dependence, dimensional
analysis shows that the spectra must be transformed using
the Batchelor scaling,

E��k,t� = �� D1/2��/��3/4Ê��k̂� , �3�

T��k,t� = �� D1/2��/��1/4T̂��k̂� , �4�

where

k̂ = k/kB, kB = ��/�D2�1/4. �5�

The time derivative may be scaled as

�

�t
=

�

�t�
+

dk̂

dt�

�

� k̂
=

�

�t�
−

1

4

k̂

�

d�

dt�

�

� k̂
. �6�

Using this scaling, and for convenience renaming t�= t, the
passive scalar Eq. �1� is transformed to*peter.hunana@email.ucr.edu
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�y + 3x�Ê��k̂� + xk̂
�

� k̂
Ê��k̂� = T̂��k̂� − 2k̂2Ê��k̂� , �7�

where x�t� and y�t� are nonstationary time-dependent turbu-
lence functions and are defined as

x =
1

2

d

dt
��

�
�1/2

, y = ��

�
�1/2

��
−1d��

dt
. �8�

For stationary turbulence, one assumes that x=y=0, other-
wise it would contradict the assumption that the spectra are
self-similar. Definition �2� is transformed to the normaliza-
tion condition

�
0

�

k̂2Ê��k̂�dk̂ =
1

2
. �9�

Kraichnan proposed a form of transfer spectrum,

T��k,t� = − ���/��1/2 �

�k
�kE� −

k

N

�

�k
�kE��� , �10�

where N is the number of space dimensions, and � is the
only free parameter of the model. The parameter � has been
both predicted and measured by many authors, and Chasnov
uses a value of �−1=6.0. Using Batchelor’s scaling, Eq. �7�
for stationary turbulence �x=y=0� shows that the normalized

passive scalar spectrum Ê��k̂� is a solution of the equation
��7,6��

�
d

dk̂
�k̂Ê��k̂� −

k̂

N

d

dk̂
„k̂Ê��k̂�…	 + 2k̂2Ê��k̂� = 0, �11�

after using the Kraichnan form of the transfer function �10�.
Chasnov reduced Eq. �11� by assuming

Ê��k̂� = �−1k̂−1f�r�, where r = �2N�−1�1/2k̂ , �12�

to obtain the equation for f�r� as

f� −
N − 1

r
f� − f = 0. �13�

The boundary conditions from Eqs. �9� and �13� are deter-
mined to be f���=0 and f�0�=1. For N=3 Kraichnan �6�
recognized �as did Mjolsness �8� independently� that the so-
lution is

f�r� = �1 + r�exp�− r� . �14�

For N=2 the situation is more complicated and Chasnov
solved Eq. �13� numerically using derived asymptotic solu-
tions

f�r� = �1 +
1

2
r2 ln r + O�r2��, r → 0, �15�

f�r� 
 r1/2 exp�− r�, r → � . �16�

Chasnov starts with a sufficiently large value of r so Eq. �16�
is approximately zero and numerically integrates Eq. �13�
over the full range of r and adjusts the proportionality con-
stant in Eq. �16� so that f�0�=1.

The solution to Eq. �13� for the case N=2 can be found
analytically in a different way than originally considered by
Kraichnan. From the theory of Bessel’s functions �see, for
example, Relton �9�� the solution to Eq. �13� can be cast in a
general form as

f�r� = r�aI1�r� + bK1�r�� , �17�

where I��r� and K��r� are the modified Bessel functions of
the first and second kind, respectively �of �th order, in gen-
eral�. Because for large r, the asymptotic behavior of the
functions is

I��r� →
1

�2�r
er, K��r� →� �

2r
e−r, r → � , �18�

to prevent divergence �the boundary condition f���=0� re-
quires that a=0. Furthermore, because for small values of r,

K��r� →
	���

2
�2

r
��

, r → 0, � � 0, �19�

where 	��� is the gamma function, the solution �17� con-
verges to

f�r� → br
1

2
�2

r
� = b, as r → 0. �20�

Therefore the boundary condition f�0�=1 requires that b=1.
The solution of Eq. �13� is therefore the simple function

f�r� = rK1�r� , �21�

and Kraichnan’s passive scalar spectrum for stationary turbu-
lence in 2D is the modified Bessel function of the second
kind and first order,

Ê��k̂� = 2�−3/2K1�2�−1/2k̂� . �22�

Bessel functions are well studied and most importantly they
are part of common mathematical software like MATLAB or
MATHEMATICA, so numerical integration is straightforward
and the spectrum can be fit directly.

The solution �22� can of course be derived directly from
Eq. �11�, which can be rearranged in the form

d2Ê��k̂�

dk̂2
−

�N − 3�

k̂

dÊ��k̂�

dk̂
− �2N

�
+

N − 1

k̂2 �Ê��k̂� = 0.

�23�

A differential equation with the general form

d2y

dx2 +
1 − 2a

x

dy

dx
− ��
�x�−1�2 +

�2�2 − a2

x2 �y = 0, �24�

has a solution of the form xaI��
x�� �with a second indepen-
dent solution given by xaK��
x��� �9�. A comparison of Eqs.
�24� and �23� gives

a =
N

2
− 1, � = 1, 
 = �2N�−1�1/2, � =

N

2
, �25�

and after eliminating the I� solution because of the boundary

condition Ê��k̂→��=0, we have the solution in the form
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Ê��k̂� = ck̂aK��
k̂� , �26�

where c is a constant, to be determined from the normaliza-
tion condition �9�. From Gradshteyn and Ryzhik �10�

�
0

�

x�K��
x�dx = 2�−1
−�−1	�1 + � + �

2
�	�1 + � − �

2
� ,

�27�

showing that the normalization condition �9� yields

c =
�−1�2N�−1�N/4

	�N/2�2�N/2−1� . �28�

The solution

Ê��k̂� = ck̂�N/2−1�KN/2��2N�−1�1/2k̂� , �29�

with normalization constant �28� is therefore the solution of
the passive scalar spectrum in stationary turbulence for gen-
eral dimension N. For the special case N=2, Eq. �28� yields
c=2�−3/2, i.e., Eq. �22�. Notice also, that by using Eq. �19�,
the solution �29� converges to Ê��k̂�→�−1k̂−1 as k̂→0 for all

values of N, which is the famous k̂−1 scaling of Batchelor �5�.
The solution �29� is useful for both even and odd dimensions
N, because for odd dimensions, the spectrum is expressible
in elementary functions. For the special case N=3,

K3/2�z� = � �

2z
�1/2

e−z�1 + z−1� , �30�

and the three-dimensional passive scalar spectrum for sta-
tionary turbulence is therefore

Ê��k̂� = �−1k̂−1�1 + �6�−1�1/2k̂�exp�− �6�−1�1/2k̂� , �31�

as recognized by Kraichnan �6� and Mjolsness �8�.
It is important to note that the full analytic expression for

the passive scalar spectrum in stationary turbulence was ob-
tained already by Kraichnan �6�, although in a different form.

Kraichnan wanted to show explicitly that for the low k̂, the

spectrum behaves like k̂−1 and that for the high k̂, it decays as

exp�−k̂�. In our notation, Kraichnan searched for a spectrum
in the form

Ê��k̂� = �−1k̂−1f�r�exp�− r� . �32�

From Eq. �11�, this yields Kummer’s equation for f�r�,

rf� − �2r + N − 1�f� + �N − 1�f = 0. �33�

Kraichnan’s form �32� has an advantage in that it explicitly
demonstrates the behavior of the spectrum for low and high

k̂. However, the solutions of Kummer’s equation are conflu-
ent hypergeometric functions which are much less “user
friendly” and it is a common practice to investigate just the
asymptotes of the spectrum or to use direct numerical inte-
gration as done by Chasnov. For the relevant case of two-
dimensional turbulence, the form of the spectrum �22�, the
modified Bessel function K1, is especially simple. For three-
dimensional turbulence, the preferred expression is, of
course, Eq. �31�.

The solutions derived by Chasnov for nonstationary flow
in the special case of x and y nonzero constants, can also be
written in forms of Bessel functions. In this case, seeking a
solution of the form �12� yields the evolution equation for
f�r� as

r2f� − �N − 1 +
Nx

�
�rf� − �r2 +

N�2x + y�
�

� f = 0. �34�

To solve Eq. �34� Chasnov neglects the term r2f and there-
fore finds a solution for r→0, with f�r�
r−s, so yielding a

modified form of the scalar spectrum as Ê��k̂�
 k̂−�1+s� for

k̂→0. To find the value of s, Chasnov obtained the quadratic
equation for s, and chose the root that in the limit N→�
gives a solution that is identical to Batchelor’s form, which
can be derived to be

Ê��k̂�Batchelor → k̂−�1+z�, as k̂ → 0, z =
2x + y

� + x
. �35�

The modified form of Kraichnan’s spectral index given by
Chasnov �7� is then

s =
N�� + x�

2�
��1 +

4�z

N�� + x��
1/2

− 1	 . �36�

This procedure can be followed and spectra for the full range

of k̂ can be obtained using the Relton form �24�. For the
nonzero, constant x ,y considered by Chasnov, the spectrum

Ê��k̂� obeys the equation

d2Ê��k̂�

dk̂2
−

�N − 3 + Nx
� �

k̂

dÊ��k̂�

dk̂

− �2N

�
+

N − 1 + �y + 3x� N
�

k̂2
�Ê��k̂� = 0. �37�

The Relton form �24� therefore yields

a =
N

2
�1 +

x

�
� − 1, � = 1,


 = �2N�−1�1/2, � =
N

2
�1 +

x

�
��1 +

4�z

N�� + x��
1/2

,

�38�

with the full solution for the passive scalar spectrum given as

Ê��k̂� = ck̂aK��
k̂� . �39�

The constant c obtained from the normalization condition
using Eq. �27� is

c =
2−�a+2�
a+3

	�3 + a + �

2
�	�3 + a − �

2
� . �40�

For the special case x=y=0, the solution �39� is equivalent to
the solution �29� as can be directly verified. The asymptotes
of solution �39� are
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Ê��k̂� = c	���2�−1
−�k̂−�1+s�, k̂ → 0, �41�

Ê��k̂� = c��/2
�1/2k̂�N−3+Nx/��/2 exp�− 
k̂�, k̂ → � ,

�42�

where s is given by Eq. �36� and the normalization constants
follow from Eq. �39�.

We briefly illustrate the obtained analytical forms of the
spectrum by performing a simple two-dimensional numerical
simulation of passive scalar evolution with constant mean
gradient, e.g., see Chasnov �7�. The code is an incompress-
ible finite difference, two-step MacCormack scheme with a
fast Poisson solver. The resolution was 5122 and the time
step dt=10−3. We assumed that viscosity �=10−3, diffusivity
D=10−4, yielding the Schmidt number Sc=10. Initially, the
passive scalar in the whole 2D plane was put to zero and
velocities with random phases were generated with an energy
spectrum E�k�
k / �1+ �k /k0�4�, with peak k0=6 and normal-
ized so that the total kinetic energy E=0.5. Values for x and
y were obtained by averaging x�t� ,y�t� between times t=2
and t=10. Without trying to find the best fit for the data, we
used the value �−1=6.0, to be consistent with Chasnov. The
analytical form �39� together with simulated spectrum at t
=10 is presented in Fig. 1. A formal evaluation of Eq. �36�
yielded s= +0.43, implying asymptotic behavior k̂−1.43 as k̂
→0. For comparison, we also included the stationary solu-

tion �22�, representing the k̂−1 range. Solution �39� fits the
obtained data quite well, although there is some overestima-
tion in the dissipation range, a consequence of our relatively
low resolution. The purpose of Fig. 1 is to compare the ana-
lytical Bessel function solutions to a simulated data set. For
higher resolution and Schmidt-number results, together with
averaging over different realizations of random initial condi-
tions, see the numerical simulations of Chasnov �7�.

In summary, we reconsidered the solutions of passive sca-
lar spectra in stationary turbulence derived by Kraichnan and
in nonstationary turbulence by Chasnov and presented them

in a useful form. Our solutions are appropriate for two-
dimensional turbulence and also three-dimensional nonsta-
tionary turbulence, where spectra can be fit for the whole

range of k̂ as a simple modified Bessel function. It is espe-
cially useful for numerical simulations, since we can fit the

full spectrum rather than fit asymptotes in either the k̂−1 or

the k̂−�1+s� ranges.
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FIG. 1. �Color online� Passive scalar spectrum Ê��k̂�. The solid
line “—” �red� represents numerical data, while the dashed line
“– –” �blue� corresponds to the nonstationary analytical form �39�.
For comparison we also included stationary analytical form �22�
represented by the dashed-dotted line “– ·–” �black�. Clearly, the
form �39� fits the data much better, consistent with the “nonstation-
ary” nature of our simulations �no driving�.
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